
Chapter 11

Sorting Algorithms

This chapter discusses algorithms for sorting a set of n items. This might
seem like a strange topic for a book on data structures, but there are sev-
eral good reasons for including it here. The most obvious reason is that
two of these sorting algorithms (quicksort and heap-sort) are intimately
related to two of the data structures we have already studied (random
binary search trees and heaps, respectively).

The first part of this chapter discusses algorithms that sort using only
comparisons and presents three algorithms that run inO(n logn) time. As
it turns out, all three algorithms are asymptotically optimal; no algorithm
that uses only comparisons can avoid doing roughly n logn comparisons
in the worst case and even the average case.

Before continuing, we should note that any of the SSet or priority
Queue implementations presented in previous chapters can also be used
to obtain an O(n logn) time sorting algorithm. For example, we can sort
n items by performing n add(x) operations followed by n remove() op-
erations on a BinaryHeap or MeldableHeap. Alternatively, we can use n
add(x) operations on any of the binary search tree data structures and
then perform an in-order traversal (Exercise 6.8) to extract the elements
in sorted order. However, in both cases we go through a lot of overhead
to build a structure that is never fully used. Sorting is such an important
problem that it is worthwhile developing direct methods that are as fast,
simple, and space-efficient as possible.

The second part of this chapter shows that, if we allow other opera-
tions besides comparisons, then all bets are off. Indeed, by using array-
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§11.1 Sorting Algorithms

indexing, it is possible to sort a set of n integers in the range {0, . . . ,nc − 1}
in O(cn) time.

11.1 Comparison-Based Sorting

In this section, we present three sorting algorithms: merge-sort, quick-
sort, and heap-sort. Each of these algorithms takes an input array a and
sorts the elements of a into non-decreasing order in O(n logn) (expected)
time. These algorithms are all comparison-based. Their second argument,
c, is a Comparator that implements the compare(a,b) method. These al-
gorithms don’t care what type of data is being sorted; the only opera-
tion they do on the data is comparisons using the compare(a,b) method.
Recall, from Section 1.2.4, that compare(a,b) returns a negative value if
a < b, a positive value if a > b, and zero if a = b.

11.1.1 Merge-Sort

The merge-sort algorithm is a classic example of recursive divide and con-
quer: If the length of a is at most 1, then a is already sorted, so we do
nothing. Otherwise, we split a into two halves, a0 = a[0], . . . ,a[n/2− 1]
and a1 = a[n/2], . . . ,a[n− 1]. We recursively sort a0 and a1, and then we
merge (the now sorted) a0 and a1 to get our fully sorted array a:

Algorithms
<T> void mergeSort(T[] a, Comparator<T> c) {

if (a.length <= 1) return;
T[] a0 = Arrays.copyOfRange(a, 0, a.length/2);
T[] a1 = Arrays.copyOfRange(a, a.length/2, a.length);
mergeSort(a0, c);
mergeSort(a1, c);
merge(a0, a1, a, c);

}

An example is shown in Figure 11.1.
Compared to sorting, merging the two sorted arrays a0 and a1 is fairly

easy. We add elements to a one at a time. If a0 or a1 is empty, then we
add the next elements from the other (non-empty) array. Otherwise, we
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Figure 11.1: The execution of mergeSort(a,c)

take the minimum of the next element in a0 and the next element in a1
and add it to a:

Algorithms
<T> void merge(T[] a0, T[] a1, T[] a, Comparator<T> c) {

int i0 = 0, i1 = 0;
for (int i = 0; i < a.length; i++) {

if (i0 == a0.length)
a[i] = a1[i1++];

else if (i1 == a1.length)
a[i] = a0[i0++];

else if (compare(a0[i0], a1[i1]) < 0)
a[i] = a0[i0++];

else
a[i] = a1[i1++];

}
}

Notice that the merge(a0,a1,a,c) algorithm performs at most n − 1
comparisons before running out of elements in one of a0 or a1.

To understand the running-time of merge-sort, it is easiest to think
of it in terms of its recursion tree. Suppose for now that n is a power of
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Figure 11.2: The merge-sort recursion tree.

two, so that n = 2logn, and logn is an integer. Refer to Figure 11.2. Merge-
sort turns the problem of sorting n elements into two problems, each of
sorting n/2 elements. These two subproblem are then turned into two
problems each, for a total of four subproblems, each of size n/4. These
four subproblems become eight subproblems, each of size n/8, and so
on. At the bottom of this process, n/2 subproblems, each of size two, are
converted into n problems, each of size one. For each subproblem of size
n/2i , the time spent merging and copying data is O(n/2i). Since there are
2i subproblems of size n/2i , the total time spent working on problems of
size 2i , not counting recursive calls, is

2i ×O(n/2i) =O(n) .

Therefore, the total amount of time taken by merge-sort is

logn∑

i=0

O(n) =O(n logn) .

The proof of the following theorem is based on preceding analysis,
but has to be a little more careful to deal with the cases where n is not a
power of 2.

Theorem 11.1. The mergeSort(a,c) algorithm runs in O(n logn) time and
performs at most n logn comparisons.
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Proof. The proof is by induction on n. The base case, in which n = 1,
is trivial; when presented with an array of length 0 or 1 the algorithm
simply returns without performing any comparisons.

Merging two sorted lists of total length n requires at most n−1 compar-
isons. Let C(n) denote the maximum number of comparisons performed
by mergeSort(a,c) on an array a of length n. If n is even, then we apply
the inductive hypothesis to the two subproblems and obtain

C(n) ≤ n− 1 + 2C(n/2)

≤ n− 1 + 2((n/2)log(n/2))

= n− 1 + n log(n/2)

= n− 1 + n logn− n
< n logn .

The case where n is odd is slightly more complicated. For this case, we
use two inequalities that are easy to verify:

log(x+ 1) ≤ log(x) + 1 , (11.1)

for all x ≥ 1 and

log(x+ 1/2) + log(x − 1/2) ≤ 2log(x) , (11.2)

for all x ≥ 1/2. Inequality (11.1) comes from the fact that log(x) + 1 =
log(2x) while (11.2) follows from the fact that log is a concave function.
With these tools in hand we have, for odd n,

C(n) ≤ n− 1 +C(dn/2e) +C(bn/2c)
≤ n− 1 + dn/2e logdn/2e+ bn/2c logbn/2c
= n− 1 + (n/2 + 1/2)log(n/2 + 1/2) + (n/2− 1/2)log(n/2− 1/2)

≤ n− 1 + n log(n/2) + (1/2)(log(n/2 + 1/2)− log(n/2− 1/2))

≤ n− 1 + n log(n/2) + 1/2

< n+ n log(n/2)

= n+ n(logn− 1)

= n logn .

229



§11.1 Sorting Algorithms

11.1.2 Quicksort

The quicksort algorithm is another classic divide and conquer algorithm.
Unlike merge-sort, which does merging after solving the two subprob-
lems, quicksort does all of its work upfront.

Quicksort is simple to describe: Pick a random pivot element, x, from
a; partition a into the set of elements less than x, the set of elements
equal to x, and the set of elements greater than x; and, finally, recursively
sort the first and third sets in this partition. An example is shown in
Figure 11.3.

Algorithms
<T> void quickSort(T[] a, Comparator<T> c) {

quickSort(a, 0, a.length, c);
}
<T> void quickSort(T[] a, int i, int n, Comparator<T> c) {

if (n <= 1) return;
T x = a[i + rand.nextInt(n)];
int p = i-1, j = i, q = i+n;
// a[i..p]<x, a[p+1..q-1]??x, a[q..i+n-1]>x
while (j < q) {

int comp = compare(a[j], x);
if (comp < 0) { // move to beginning of array
swap(a, j++, ++p);

} else if (comp > 0) {
swap(a, j, --q); // move to end of array

} else {
j++; // keep in the middle

}
}
// a[i..p]<x, a[p+1..q-1]=x, a[q..i+n-1]>x
quickSort(a, i, p-i+1, c);
quickSort(a, q, n-(q-i), c);

}

All of this is done in place, so that instead of making copies of subar-
rays being sorted, the quickSort(a,i,n,c) method only sorts the subarray
a[i], . . . ,a[i+ n− 1]. Initially, this method is invoked with the arguments
quickSort(a,0,a.length,c).
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Figure 11.3: An example execution of quickSort(a,0,14,c)

At the heart of the quicksort algorithm is the in-place partitioning al-
gorithm. This algorithm, without using any extra space, swaps elements
in a and computes indices p and q so that

a[i]



< x if 0 ≤ i ≤ p
= x if p < i < q
> x if q ≤ i ≤ n− 1

This partitioning, which is done by the while loop in the code, works by
iteratively increasing p and decreasing q while maintaining the first and
last of these conditions. At each step, the element at position j is either
moved to the front, left where it is, or moved to the back. In the first two
cases, j is incremented, while in the last case, j is not incremented since
the new element at position j has not yet been processed.

Quicksort is very closely related to the random binary search trees
studied in Section 7.1. In fact, if the input to quicksort consists of n
distinct elements, then the quicksort recursion tree is a random binary
search tree. To see this, recall that when constructing a random binary
search tree the first thing we do is pick a random element x and make it
the root of the tree. After this, every element will eventually be compared
to x, with smaller elements going into the left subtree and larger elements
into the right.

In quicksort, we select a random element x and immediately compare
everything to x, putting the smaller elements at the beginning of the array
and larger elements at the end of the array. Quicksort then recursively
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sorts the beginning of the array and the end of the array, while the random
binary search tree recursively inserts smaller elements in the left subtree
of the root and larger elements in the right subtree of the root.

The above correspondence between random binary search trees and
quicksort means that we can translate Lemma 7.1 to a statement about
quicksort:

Lemma 11.1. When quicksort is called to sort an array containing the inte-
gers 0, . . . ,n−1, the expected number of times element i is compared to a pivot
element is at most Hi+1 +Hn−i.

A little summing up of harmonic numbers gives us the following the-
orem about the running time of quicksort:

Theorem 11.2. When quicksort is called to sort an array containing n distinct
elements, the expected number of comparisons performed is at most 2n lnn +
O(n).

Proof. Let T be the number of comparisons performed by quicksort when
sorting n distinct elements. Using Lemma 11.1 and linearity of expecta-
tion, we have:

E[T ] =
n−1∑

i=0

(Hi+1 +Hn−i)

= 2
n∑

i=1

Hi

≤ 2
n∑

i=1

Hn

≤ 2n lnn+ 2n = 2n lnn+O(n)

Theorem 11.3 describes the case where the elements being sorted are
all distinct. When the input array, a, contains duplicate elements, the
expected running time of quicksort is no worse, and can be even better;
any time a duplicate element x is chosen as a pivot, all occurrences of x get
grouped together and do not take part in either of the two subproblems.

Theorem 11.3. The quickSort(a,c) method runs inO(n logn) expected time
and the expected number of comparisons it performs is at most 2n lnn+O(n).
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Figure 11.4: A snapshot of the execution of heapSort(a,c). The shaded part of
the array is already sorted. The unshaded part is a BinaryHeap. During the next
iteration, element 5 will be placed into array location 8.

11.1.3 Heap-sort

The heap-sort algorithm is another in-place sorting algorithm. Heap-sort
uses the binary heaps discussed in Section 10.1. Recall that the Binary-
Heap data structure represents a heap using a single array. The heap-sort
algorithm converts the input array a into a heap and then repeatedly ex-
tracts the minimum value.

More specifically, a heap stores n elements in an array, a, at array lo-
cations a[0], . . . ,a[n− 1] with the smallest value stored at the root, a[0].
After transforming a into a BinaryHeap, the heap-sort algorithm repeat-
edly swaps a[0] and a[n− 1], decrements n, and calls trickleDown(0) so
that a[0], . . . ,a[n− 2] once again are a valid heap representation. When
this process ends (because n = 0) the elements of a are stored in decreas-
ing order, so a is reversed to obtain the final sorted order.1 Figure 11.4
shows an example of the execution of heapSort(a,c).

BinaryHeap
<T> void sort(T[] a, Comparator<T> c) {

BinaryHeap<T> h = new BinaryHeap<T>(a, c);
while (h.n > 1) {

1The algorithm could alternatively redefine the compare(x,y) function so that the heap
sort algorithm stores the elements directly in ascending order.
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h.swap(--h.n, 0);
h.trickleDown(0);

}
Collections.reverse(Arrays.asList(a));

}

A key subroutine in heap sort is the constructor for turning an un-
sorted array a into a heap. It would be easy to do this inO(n logn) time by
repeatedly calling the BinaryHeap add(x) method, but we can do better by
using a bottom-up algorithm. Recall that, in a binary heap, the children
of a[i] are stored at positions a[2i+ 1] and a[2i+ 2]. This implies that
the elements a[bn/2c], . . . ,a[n− 1] have no children. In other words, each
of a[bn/2c], . . . ,a[n− 1] is a sub-heap of size 1. Now, working backwards,
we can call trickleDown(i) for each i ∈ {bn/2c − 1, . . . ,0}. This works, be-
cause by the time we call trickleDown(i), each of the two children of a[i]
are the root of a sub-heap, so calling trickleDown(i) makes a[i] into the
root of its own subheap.

BinaryHeap
BinaryHeap(T[] a, Comparator<T> c) {

this.c = c;
this.a = a;
n = a.length;
for (int i = n/2-1; i >= 0; i--) {

trickleDown(i);
}

}

The interesting thing about this bottom-up strategy is that it is more
efficient than calling add(x) n times. To see this, notice that, for n/2 el-
ements, we do no work at all, for n/4 elements, we call trickleDown(i)
on a subheap rooted at a[i] and whose height is one, for n/8 elements,
we call trickleDown(i) on a subheap whose height is two, and so on.
Since the work done by trickleDown(i) is proportional to the height of
the sub-heap rooted at a[i], this means that the total work done is at most

logn∑

i=1

O((i − 1)n/2i) ≤
∞∑

i=1

O(in/2i) =O(n)
∞∑

i=1

i/2i =O(2n) =O(n) .
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The second-last equality follows by recognizing that the sum
∑∞
i=1 i/2

i is
equal, by definition of expected value, to the expected number of times
we toss a coin up to and including the first time the coin comes up as
heads and applying Lemma 4.2.

The following theorem describes the performance of heapSort(a,c).

Theorem 11.4. The heapSort(a,c) method runs in O(n logn) time and per-
forms at most 2n logn+O(n) comparisons.

Proof. The algorithm runs in three steps: (1) transforming a into a heap,
(2) repeatedly extracting the minimum element from a, and (3) revers-
ing the elements in a. We have just argued that step 1 takes O(n) time
and performs O(n) comparisons. Step 3 takes O(n) time and performs no
comparisons. Step 2 performs n calls to trickleDown(0). The ith such
call operates on a heap of size n− i and performs at most 2log(n− i) com-
parisons. Summing this over i gives

n−i∑

i=0

2log(n− i) ≤
n−i∑

i=0

2logn = 2n logn

Adding the number of comparisons performed in each of the three steps
completes the proof.

11.1.4 A Lower-Bound for Comparison-Based Sorting

We have now seen three comparison-based sorting algorithms that each
run in O(n logn) time. By now, we should be wondering if faster algo-
rithms exist. The short answer to this question is no. If the only oper-
ations allowed on the elements of a are comparisons, then no algorithm
can avoid doing roughly n logn comparisons. This is not difficult to prove,
but requires a little imagination. Ultimately, it follows from the fact that

log(n!) = logn+ log(n− 1) + · · ·+ log(1) = n logn−O(n) .

(Proving this fact is left as Exercise 11.11.)
We will start by focusing our attention on deterministic algorithms

like merge-sort and heap-sort and on a particular fixed value of n. Imag-
ine such an algorithm is being used to sort n distinct elements. The key
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< >

< > < >

< > < >

Figure 11.5: A comparison tree for sorting an array a[0],a[1],a[2] of length n = 3.

to proving the lower-bound is to observe that, for a deterministic algo-
rithm with a fixed value of n, the first pair of elements that are compared
is always the same. For example, in heapSort(a,c), when n is even, the
first call to trickleDown(i) is with i = n/2− 1 and the first comparison is
between elements a[n/2− 1] and a[n− 1].

Since all input elements are distinct, this first comparison has only
two possible outcomes. The second comparison done by the algorithm
may depend on the outcome of the first comparison. The third compar-
ison may depend on the results of the first two, and so on. In this way,
any deterministic comparison-based sorting algorithm can be viewed as
a rooted binary comparison tree. Each internal node, u, of this tree is la-
belled with a pair of indices u.i and u.j. If a[u.i] < a[u.j] the algorithm
proceeds to the left subtree, otherwise it proceeds to the right subtree.
Each leaf w of this tree is labelled with a permutation w.p[0], . . . ,w.p[n− 1]
of 0, . . . ,n−1. This permutation represents the one that is required to sort
a if the comparison tree reaches this leaf. That is,

a[w.p[0]] < a[w.p[1]] < · · · < a[w.p[n− 1]] .

An example of a comparison tree for an array of size n = 3 is shown in
Figure 11.5.

The comparison tree for a sorting algorithm tells us everything about
the algorithm. It tells us exactly the sequence of comparisons that will be
performed for any input array, a, having n distinct elements and it tells
us how the algorithm will reorder a in order to sort it. Consequently, the
comparison tree must have at least n! leaves; if not, then there are two
distinct permutations that lead to the same leaf; therefore, the algorithm
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a[0] ≶ a[2]

a[1] < a[0] < a[2]
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< >

< > < >

Figure 11.6: A comparison tree that does not correctly sort every input permuta-
tion.

does not correctly sort at least one of these permutations.
For example, the comparison tree in Figure 11.6 has only 4 < 3! = 6

leaves. Inspecting this tree, we see that the two input arrays 3,1,2 and
3,2,1 both lead to the rightmost leaf. On the input 3,1,2 this leaf correctly
outputs a[1] = 1,a[2] = 2,a[0] = 3. However, on the input 3,2,1, this node
incorrectly outputs a[1] = 2,a[2] = 1,a[0] = 3. This discussion leads to the
primary lower-bound for comparison-based algorithms.

Theorem 11.5. For any deterministic comparison-based sorting algorithm A
and any integer n ≥ 1, there exists an input array a of length n such that A
performs at least log(n!) = n logn−O(n) comparisons when sorting a.

Proof. By the preceding discussion, the comparison tree defined by A
must have at least n! leaves. An easy inductive proof shows that any
binary tree with k leaves has a height of at least logk. Therefore, the
comparison tree for A has a leaf, w, with a depth of at least log(n!) and
there is an input array a that leads to this leaf. The input array a is an
input for which A does at least log(n!) comparisons.

Theorem 11.5 deals with deterministic algorithms like merge-sort and
heap-sort, but doesn’t tell us anything about randomized algorithms like
quicksort. Could a randomized algorithm beat the log(n!) lower bound
on the number of comparisons? The answer, again, is no. Again, the way
to prove it is to think differently about what a randomized algorithm is.

In the following discussion, we will assume that our decision trees
have been “cleaned up” in the following way: Any node that can not be
reached by some input array a is removed. This cleaning up implies that
the tree has exactly n! leaves. It has at least n! leaves because, otherwise, it
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could not sort correctly. It has at most n! leaves since each of the possible
n! permutation of n distinct elements follows exactly one root to leaf path
in the decision tree.

We can think of a randomized sorting algorithm, R, as a determin-
istic algorithm that takes two inputs: The input array a that should be
sorted and a long sequence b = b1,b2,b3, . . . , bm of random real numbers
in the range [0,1]. The random numbers provide the randomization for
the algorithm. When the algorithm wants to toss a coin or make a ran-
dom choice, it does so by using some element from b. For example, to
compute the index of the first pivot in quicksort, the algorithm could use
the formula bnb1c.

Now, notice that if we fix b to some particular sequence b̂ then R
becomes a deterministic sorting algorithm, R(b̂), that has an associated
comparison tree, T (b̂). Next, notice that if we select a to be a random per-
mutation of {1, . . . ,n}, then this is equivalent to selecting a random leaf, w,
from the n! leaves of T (b̂).

Exercise 11.13 asks you to prove that, if we select a random leaf from
any binary tree with k leaves, then the expected depth of that leaf is at
least logk. Therefore, the expected number of comparisons performed by
the (deterministic) algorithmR(b̂) when given an input array containing a
random permutation of {1, . . . ,n} is at least log(n!). Finally, notice that this
is true for every choice of b̂, therefore it holds even forR. This completes
the proof of the lower-bound for randomized algorithms.

Theorem 11.6. For any integer n ≥ 1 and any (deterministic or randomized)
comparison-based sorting algorithm A, the expected number of comparisons
done byA when sorting a random permutation of {1, . . . ,n} is at least log(n!) =
n logn−O(n).

11.2 Counting Sort and Radix Sort

In this section we study two sorting algorithms that are not comparison-
based. Specialized for sorting small integers, these algorithms elude the
lower-bounds of Theorem 11.5 by using (parts of) the elements in a as
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indices into an array. Consider a statement of the form

c[a[i]] = 1 .

This statement executes in constant time, but has c.length possible dif-
ferent outcomes, depending on the value of a[i]. This means that the
execution of an algorithm that makes such a statement cannot be mod-
elled as a binary tree. Ultimately, this is the reason that the algorithms in
this section are able to sort faster than comparison-based algorithms.

11.2.1 Counting Sort

Suppose we have an input array a consisting of n integers, each in the
range 0, . . . ,k − 1. The counting-sort algorithm sorts a using an auxiliary
array c of counters. It outputs a sorted version of a as an auxiliary array
b.

The idea behind counting-sort is simple: For each i ∈ {0, . . . ,k − 1},
count the number of occurrences of i in a and store this in c[i]. Now,
after sorting, the output will look like c[0] occurrences of 0, followed by
c[1] occurrences of 1, followed by c[2] occurrences of 2,. . . , followed by
c[k− 1] occurrences of k− 1. The code that does this is very slick, and its
execution is illustrated in Figure 11.7:

Algorithms
int[] countingSort(int[] a, int k) {

int c[] = new int[k];
for (int i = 0; i < a.length; i++)

c[a[i]]++;
for (int i = 1; i < k; i++)

c[i] += c[i-1];
int b[] = new int[a.length];
for (int i = a.length-1; i >= 0; i--)

b[--c[a[i]]] = a[i];
return b;

}

The first for loop in this code sets each counter c[i] so that it counts
the number of occurrences of i in a. By using the values of a as indices,
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0 0 0 1 1 2 2 2 3 4 4 5 6 7 7 9 9 9 9 9b

7 2 9 0 1 2 0 9 7 4 4 6 9 1 0 9 3 2 5 9a

3 5 8 9 11 12 13 15 20c′
0 1 2 3 4 5 6 78 9

Figure 11.7: The operation of counting sort on an array of length n = 20 that stores
integers 0, . . . ,k− 1 = 9.
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these counters can all be computed inO(n) time with a single for loop. At
this point, we could use c to fill in the output array b directly. However,
this would not work if the elements of a have associated data. Therefore
we spend a little extra effort to copy the elements of a into b.

The next for loop, which takes O(k) time, computes a running-sum
of the counters so that c[i] becomes the number of elements in a that are
less than or equal to i. In particular, for every i ∈ {0, . . . ,k−1}, the output
array, b, will have

b[c[i− 1]] = b[c[i− 1] + 1] = · · · = b[c[i]− 1] = i .

Finally, the algorithm scans a backwards to place its elements, in order,
into an output array b. When scanning, the element a[i] = j is placed at
location b[c[j]− 1] and the value c[j] is decremented.

Theorem 11.7. The countingSort(a,k) method can sort an array a contain-
ing n integers in the set {0, . . . ,k− 1} in O(n+ k) time.

The counting-sort algorithm has the nice property of being stable; it
preserves the relative order of equal elements. If two elements a[i] and
a[j] have the same value, and i < j then a[i] will appear before a[j] in b.
This will be useful in the next section.

11.2.2 Radix-Sort

Counting-sort is very efficient for sorting an array of integers when the
length, n, of the array is not much smaller than the maximum value, k−1,
that appears in the array. The radix-sort algorithm, which we now de-
scribe, uses several passes of counting-sort to allow for a much greater
range of maximum values.

Radix-sort sorts w-bit integers by using w/d passes of counting-sort to
sort these integers d bits at a time.2 More precisely, radix sort first sorts
the integers by their least significant d bits, then their next significant d
bits, and so on until, in the last pass, the integers are sorted by their most
significant d bits.

2We assume that d divides w, otherwise we can always increase w to ddw/de.

241



§11.2 Sorting Algorithms
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Figure 11.8: Using radixsort to sort w = 8-bit integers by using 4 passes of count-
ing sort on d = 2-bit integers.

Algorithms
int[] radixSort(int[] a) {

int[] b = null;
for (int p = 0; p < w/d; p++) {

int c[] = new int[1<<d];
// the next three for loops implement counting-sort
b = new int[a.length];
for (int i = 0; i < a.length; i++)
c[(a[i] >> d*p)&((1<<d)-1)]++;

for (int i = 1; i < 1<<d; i++)
c[i] += c[i-1];

for (int i = a.length-1; i >= 0; i--)
b[--c[(a[i] >> d*p)&((1<<d)-1)]] = a[i];

a = b;
}
return b;

}

(In this code, the expression (a[i]>>d ∗ p)&((1<<d)− 1) extracts the in-
teger whose binary representation is given by bits (p + 1)d − 1, . . . ,pd of
a[i].) An example of the steps of this algorithm is shown in Figure 11.8.

This remarkable algorithm sorts correctly because counting-sort is a
stable sorting algorithm. If x < y are two elements of a, and the most
significant bit at which x differs from y has index r, then x will be placed
before y during pass br/dc and subsequent passes will not change the rel-
ative order of x and y.
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Radix-sort performs w/d passes of counting-sort. Each pass requires
O(n + 2d) time. Therefore, the performance of radix-sort is given by the
following theorem.

Theorem 11.8. For any integer d > 0, the radixSort(a,k) method can sort
an array a containing n w-bit integers in O((w/d)(n+ 2d)) time.

If we think, instead, of the elements of the array being in the range
{0, . . . ,nc − 1}, and take d = dlogne we obtain the following version of The-
orem 11.8.

Corollary 11.1. The radixSort(a,k) method can sort an array a containing
n integer values in the range {0, . . . ,nc − 1} in O(cn) time.

11.3 Discussion and Exercises

Sorting is the fundamental algorithmic problem in computer science, and
it has a long history. Knuth [48] attributes the merge-sort algorithm to
von Neumann (1945). Quicksort is due to Hoare [39]. The original heap-
sort algorithm is due to Williams [78], but the version presented here (in
which the heap is constructed bottom-up in O(n) time) is due to Floyd
[28]. Lower-bounds for comparison-based sorting appear to be folklore.
The following table summarizes the performance of these comparison-
based algorithms:

comparisons in-place
Merge-sort n logn worst-case No
Quicksort 1.38n logn+O(n) expected Yes
Heap-sort 2n logn+O(n) worst-case Yes

Each of these comparison-based algorithms has its advantages and
disadvantages. Merge-sort does the fewest comparisons and does not rely
on randomization. Unfortunately, it uses an auxilliary array during its
merge phase. Allocating this array can be expensive and is a potential
point of failure if memory is limited. Quicksort is an in-place algorithm
and is a close second in terms of the number of comparisons, but is ran-
domized, so this running time is not always guaranteed. Heap-sort does
the most comparisons, but it is in-place and deterministic.
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There is one setting in which merge-sort is a clear-winner; this occurs
when sorting a linked-list. In this case, the auxiliary array is not needed;
two sorted linked lists are very easily merged into a single sorted linked-
list by pointer manipulations (see Exercise 11.2).

The counting-sort and radix-sort algorithms described here are due
to Seward [68, Section 2.4.6]. However, variants of radix-sort have been
used since the 1920s to sort punch cards using punched card sorting ma-
chines. These machines can sort a stack of cards into two piles based on
the existence (or not) of a hole in a specific location on the card. Repeat-
ing this process for different hole locations gives an implementation of
radix-sort.

Finally, we note that counting sort and radix-sort can be used to sort
other types of numbers besides non-negative integers. Straightforward
modifications of counting sort can sort integers, in any interval {a, . . . ,b},
in O(n + b − a) time. Similarly, radix sort can sort integers in the same
interval inO(n(logn(b−a)) time. Finally, both of these algorithms can also
be used to sort floating point numbers in the IEEE 754 floating point for-
mat. This is because the IEEE format is designed to allow the comparison
of two floating point numbers by comparing their values as if they were
integers in a signed-magnitude binary representation [2].

Exercise 11.1. Illustrate the execution of merge-sort and heap-sort on an
input array containing 1,7,4,6,2,8,3,5. Give a sample illustration of one
possible execution of quicksort on the same array.

Exercise 11.2. Implement a version of the merge-sort algorithm that sorts
a DLList without using an auxiliary array. (See Exercise 3.13.)

Exercise 11.3. Some implementations of quickSort(a,i,n,c) always use
a[i] as a pivot. Give an example of an input array of length n in which
such an implementation would perform

(n
2
)

comparisons.

Exercise 11.4. Some implementations of quickSort(a,i,n,c) always use
a[i+ n/2] as a pivot. Given an example of an input array of length n in
which such an implementation would perform

(n
2
)

comparisons.

Exercise 11.5. Show that, for any implementation of quickSort(a,i,n,c)
that chooses a pivot deterministically, without first looking at any values
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in a[i], . . . ,a[i+ n− 1], there exists an input array of length n that causes
this implementation to perform

(n
2
)

comparisons.

Exercise 11.6. Design a Comparator, c, that you could pass as an argu-
ment to quickSort(a,i,n,c) and that would cause quicksort to perform(n
2
)

comparisons. (Hint: Your comparator does not actually need to look
at the values being compared.)

Exercise 11.7. Analyze the expected number of comparisons done by
Quicksort a little more carefully than the proof of Theorem 11.3. In par-
ticular, show that the expected number of comparisons is 2nHn − n+Hn.

Exercise 11.8. Describe an input array that causes heap sort to perform
at least 2n logn−O(n) comparisons. Justify your answer.

Exercise 11.9. The heap sort implementation described here sorts the
elements into reverse sorted order and then reverses the array. This last
step could be avoided by defining a new Comparator that negates the
results of the input Comparator, c. Explain why this would not be a good
optimization. (Hint: Consider how many negations would need to be
done in relation to how long it takes to reverse the array.)

Exercise 11.10. Find another pair of permutations of 1,2,3 that are not
correctly sorted by the comparison tree in Figure 11.6.

Exercise 11.11. Prove that logn! = n logn−O(n).

Exercise 11.12. Prove that a binary tree with k leaves has height at least
logk.

Exercise 11.13. Prove that, if we pick a random leaf from a binary tree
with k leaves, then the expected height of this leaf is at least logk.

Exercise 11.14. The implementation of radixSort(a,k) given here works
when the input array, a contains only non-negative integers. Extend this
implementation so that it also works correctly when a contains both neg-
ative and non-negative integers.
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